Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prakiraan Nilai Permeabilitas Berdasarkan Sifat Fisik Tanah Menggunakan Artificial Neural Network Berbasis Algoritma Backprogation
Penanda Bagikan

CD Skripsi

Prakiraan Nilai Permeabilitas Berdasarkan Sifat Fisik Tanah Menggunakan Artificial Neural Network Berbasis Algoritma Backprogation

Nicola Rabb Ranata / 1807113471 - Nama Orang;

ABSTRACT
Permeability is a parameter of soil related to the most important thing in
development to understand infiltration, runoff, drainage and settlement processes.
Soil permeability testing can be carried out through laboratory or field testing
procedures, but there is no definite reference regarding the correlation of this
permeability with the parameters of soil physical properties and soil mechanical
properties. Artificial neural networks are often used to estimate complex and
nonlinear values. The aim of this research is to estimate the permeability coefficient
(k) based on permeability test data and soil physical properties in the laboratory
using the ability of artificial neural networks with the backpropagation algorithm.
This study was divided into 2 stages, for expansive and non-expansive soil types,
which were divided into 2 training variations, namely 80:20 and 70:30, with input
data in the form of soil liquid limit (LL), soil plasticity index (IP), and % fine grain.
This study shows that the artificial neural network is capable and effective in
predicting the value of the permeability coefficient (k) with a small error value and
a strong regression equation where R and R2 are close to 1 with small RMSE and
MAE. The best network structure obtained has 2 hidden layers with 40 neurons in
the first hidden layer and 20 neurons in the second hidden layer in both types of
soil. Meanwhile, with the help of a simple matrix, the appliaction of the network is
successful in determining the prediction of new input value which result in small
RMSE and MAE accruracy on expansive and non-expansive soils
Keyword: Permeability, Soil Physical Properties, Expansive Soil, Non-Expansive
Soil, Artificial Neural Network, Backpropagation.


Ketersediaan
#
Perpustakaan Universitas Riau 1807113471
1807113471
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807113471
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Sipil., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807113471
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?