Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Jenis Sampah Berbasis Cnn Menggunakan Metode Transfer Learning Resnet-50
Penanda Bagikan

CD Skripsi

Klasifikasi Jenis Sampah Berbasis Cnn Menggunakan Metode Transfer Learning Resnet-50

MARIO CARNOVAN MARPAUNG / 1807125021 - Nama Orang;

ABSTRACT
Waste is a problem that never ends when discussed. Indonesia itself is listed as the second largest waste producing country in the world after China. This is proven by the increase in the amount of waste in Indonesia by 0.8 million tons from 67 million tons in 2019 to 67.8 million tons in 2020. To overcome this waste problem, the best solution is needed, such as creating a classification system for types of waste that can distinguish kind of garbage automatically. This classification system is useful for making it easier to categorize types of waste in the waste recycling process. In creating a CNN-based image classification system using the resnet-50 transfer learning method which functions to speed up the training process. The dataset used consists of 200 datasets which are divided into three classes, namely Inorganic, Organic, and Medical. After collecting the dataset, it then goes to the classification stage which consists of preprocessing training and testing. This research was carried out using the confusion matrix method which obtained precision results of 99%, recall of 99%, and F1-Score of 99%, while the validation test produced an accuracy of 93%.
Keywords : Classification, Garbage, Convolutional Neural Network, ResNet-50, Deep Learning, Machine Learning.


Ketersediaan
#
Perpustakaan Universitas Riau 1807125021
1807125021
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807125021
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Elektro., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807125021
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?