Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Rancang Bangun Model Deteksi Untuk Tingkat Kematangan Dan Penghitungan Tandan Buah Kelapa Sawit Menggunakan Computer Vision Dengan Algoritma Yolo Dan Bytetrack
Penanda Bagikan

CD Skripsi

Rancang Bangun Model Deteksi Untuk Tingkat Kematangan Dan Penghitungan Tandan Buah Kelapa Sawit Menggunakan Computer Vision Dengan Algoritma Yolo Dan Bytetrack

Hanna Ruhil Paseha / 2103134782 - Nama Orang;

This study aims to design a system for detecting ripeness levels and automatically counting oil palm Fresh Fruit Bunches (FFB) using a computer vision approach based on YOLOv8 and ByteTrack algorithms. The main issue addressed is the low efficiency and accuracy of the manual sorting process based on ripeness level, which is still commonly used in the palm oil industry. The system is designed to recognize two fruit classes ripe and unripe through RGB value analysis and image data captured using an industrial camera. The object detection model was trained using YOLOv8s, while real-time object tracking and counting were carried out using the ByteTrack algorithm. The dataset consisted of 300 FFB images (15 ripe and 15 unripe samples) and several test videos. Evaluation results showed excellent detection performance, with 100% precision and 99.5% recall for both classes, along with mAP50 of 95.8% and mAP50-95 of 91.3%. Tracking performance yielded MOTA scores of 0.51 for ripe, 0.64 for unripe, and 0.66 for mixed classes, with consistently high IDF1 values across all categories. Furthermore, manual evaluation using video tests showed F1-scores of 0.80 (ripe), 1.00 (unripe), and 0.71 (mixed). These findings demonstrate that the integration of YOLOv8 and ByteTrack provides an effective and accurate solution to support the automation of FFB detection, tracking, and counting processes in the palm oil industry.

Keywords: oil palm, computer vision, YOLOv8, ByteTrack.
.


Ketersediaan
#
Perpustakaan Universitas Riau 2103134782
2103134782
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103134782
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103134782
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ERA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • II. TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?