Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

CD Skripsi

Potensi Jaringan Saraf Tiruan Backpropagation Dalam Memprediksi Respon Sistem Multi Degree Of Freedom Akibat Pembebenan Dinamik

PURI AWANDA CANTIKAWATI / 1207121324 - Nama Orang;

One of the simplification model of structure in structural dynamic engineering was converting the model of a structure into the system that has mass, stiffness, damping percentage and number of Degree of Freedom (DOF) whether in single number (Single Degree of Freedom) or multi number (Multi Degree of Freedom) as its components. Yet the application of model SDOF system was used as fundamental analysis and had to be developed for MDOF system. The research of MDOF system had become necessity to be continuously done in order to improve the previous existing analysis method. One of the method that potentially can be used was with Artificial Neural Network (ANN). Thus why this research was aimed to identify the capability of ANN in predicting the system responses. The analysis of system with 4, 6 and 8 DOFs that was subjected to dynamic excitation such as sinusoidal, triangular, rectangular and ramp load was done with Newmark-β method listing program of FORTRAN. Then analysis continued with Backpropagation Neural Network (BP-NN) using MATLAB program. The input data for BP-NN were heights (H), mass, stiffness, damping value, natural period (Tn) and dynamic load factor (DLF) with system responses as target data. The result had shown that variation of dynamic loads and system parameter had affected the value of system responses. While BP-NN training result showed its ability in predicting the system responses was decreasing from displacement to velocity and acceleration. It could be seen within the degradation value of regression (R) from 0.99-0.84, the increase of Mean Squared Error (MSE) from 1.19×10-7-0.7654 and error percentage from 5%-41%. Therefore ANN method was not capable to be used in predicting the responses of MDOF system under dynamic loads.
Keywords: MDOF system, dynamic load, Backpropagation Neural Network, Newmark-β, displacement, velocity, acceleration


Ketersediaan
#
Perpustakaan Universitas Riau 07 01. 116 (0044)
07 01. 116 (0044)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 01. 116 (0044)
Penerbit
Pekanbaru : Universitas Riau - Fakultas Teknik - Teknik Sipil., 2016
Deskripsi Fisik
xviii, 123 hlm.: ill.; 29 cm
Bahasa
ISBN/ISSN
-
Klasifikasi
07 01. 116 (0044)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?