Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

CD Skripsi

Klasifikasi Angka Pencurian Di Riau Dengan Multivariate Adaptive Regression Splines (Mars) Dan Bootstrap Aggregating Mars

ZHAFIRA HAURA / 1803124092 - Nama Orang;

ABSTRACT
One of the nonparametric regression methods that can be used for classification is
Multivariate Adaptive Regression Splines (MARS) which is enhanced using
bootstrap aggregating (bagging) with 50 replications. This method is applied to
conventional crime data, namely cases of theft which can be seen based on crime
rates in Riau Province in 2016-2020. The dependent variable used is the theft
crime rate, while the independent variables are population density (!!), poverty
rate (!"), RLS (!#), and PDRB (!$). This study aims to form the best model and
see the results of the classification based on the factors that influence the crime
rate indicators in Riau Province. Bagging MARS method with training data of
68% produces a minimum GCV value is 0.08961, while the MARS method is
0.13993 in obtaining the best model. The MARS method yields 60% for accuracy,
80% for sensitivity and specificity 40%. The best accuracy value is 85% with
sensitivity is 100% and specificity is 70% using bagging MARS with testing data
by 32%. The most influential variable using the MARS method and bagging
MARS on the crime rate indicator of theft cases in Riau Province in 2016-2020
are the poverty rate (!") variable with an importance level of 100%.
Keywords: Crime rate indicator of theft cases, classification, multivariate
adaptive regression splines, bootstrap aggregating.


Ketersediaan
#
Perpustakaan Universitas Riau 1803124092
1803124092
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1803124092
Penerbit
Pekanbaru : Universitas Riau - FMIPA - STATISTIKA., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1803124092
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Deti
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV. HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?