Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Deteksi Cacat Pada Tandan Buah Segar Kelapa Sawit Menggunakan Computer Vision Berbasis Algoritma You Only Look Once
Penanda Bagikan

CD Skripsi

Deteksi Cacat Pada Tandan Buah Segar Kelapa Sawit Menggunakan Computer Vision Berbasis Algoritma You Only Look Once

Muhammad Ikhsan Hamid / 1803112139 - Nama Orang;

ABSTRACT
Every year oil palm fresh fruit bunches (FFB) production continues to increase. However, one of the problems in crude palm oil (CPO) production is the process of sorting and grading, which is still done manually and traditionally. This problem can be eased by introducing a computer vision-based sorting and grading system and you only look once (YOLO) object detection method. This study aimed to build a YOLO object detection system for defective FFB based on the RGB values of each object and compared with normal oil palm FFB. The computer vision system consists of an RGB camera, a conveyor, and a python-based computer program with YOLO object detection. This system analyzed the external quality of FFB based on Minister of Agriculture Regulation No. 14 of 2013, including rotten oil palm, thorny FFB, empty, and long stalk FFB. The YOLO detection system was tested in four-room lighting conditions with lux values of 215, 305, 306, and 317. The test result of the detection model with the highest accuracy was obtained at a lux of 317 with an accuracy of oil palm FFB normal 99%, 82% for thorny FFB, 98% for rotten, 95% for empty FFB, and 98% for long stalk FFB. The accuracy validation of the object detection system used the confusion matrix which resulted in mAP of 95%. The YOLO object detection method using video frames can make it easier to sort moving FFB on the conveyor and obtain RGB values using a python program to determine how well the object detection system can recognize objects.
Keywords: Fresh fruit bunches (FFB), sorting and grading, defect, computer vision, YOLO, confusion matrix.


Ketersediaan
#
Perpustakaan Universitas Riau 1803112139
1803112139
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1803112139
Penerbit
Pekanbaru : Universitas Riau - FMIPA - Fisika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1803112139
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
tethi
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?