Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Sampah Organik Menggunakan Pencitraan Komputer Berbasis Algoritma Deteksi Objek Yolo
Penanda Bagikan

CD Skripsi

Klasifikasi Sampah Organik Menggunakan Pencitraan Komputer Berbasis Algoritma Deteksi Objek Yolo

Dinda Kamia Evkha Putri / 1803111103 - Nama Orang;

ABSTRACT
Organic waste is still mixed with other types of waste in landfills. Waste segregation is important to process to facilitate the recycling process. Modern waste segregation method is required for less time and more effective than traditional methods. Modern waste segregation can be supported using computer vision. Computer vision consists of a combination of optical and non optical components. Computer vision utilizes the YOLO (You Only Look Once) object detection algorithm model to detect and classify types of organic waste. In this research, YOLO algorithm detects and classifies organic waste into two types, namely used beverage carton (UBC)/paper organic waste and non UBC/paper organic waste. The result of the YOLO testing process is a bounding box that contains the object name and its prediction accuracy by the system. Confusion matrix was used to evaluate the system in classifying. The confusion matrix shows that the system has succeeded in classifying organic waste with an accuracy of 98,77%. The Principal Component Analysis (PCA) was also used for waste classification by utilizing the sample RGB values. PCA results show a tendency to group samples with an accuracy of 96,93% data distribution. The results show that YOLO object detection algorithm is able detect and classify organic waste having the potential to use in modern waste segregation.
Keywords: Organic Waste, Computer Vision, Object Detection Algorithm, YOLO, Confusion Matrix


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
1803111103
Penerbit
Pekanbaru : Universitas Riau - FMIPA - Fisika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1803111103
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
tethi
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?