Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Kadar Minyak Dan Asam Lemak Bebas Tandan Buah Segar Kelapa Sawit Menggunakan Pencitraan Multispektral Dan Machine Learning
Penanda Bagikan

CD Skripsi

Prediksi Kadar Minyak Dan Asam Lemak Bebas Tandan Buah Segar Kelapa Sawit Menggunakan Pencitraan Multispektral Dan Machine Learning

GALEF ALFAHREZI / 1703110184 - Nama Orang;

ABSTRACT
Multispectral imaging has many applications in agriculture, such as prediction of the internal qualities of fruit and vegetables. Multispectral is preferable than Hyperspectral imaging for fast inline sorting and grading machine vision due to fewer wavelength bands applied. Oil palm fresh fruit bunches (FFBs) are the source of crude palm oil (CPO) in Indonesia and Malaysia. However, the sorting and grading of FFBs are still operated manually by graders. Oil content and free fatty acid (FFA) are the main qualities of FFBs. Predicting the oil and FFA contents as part of the grading process is crucial. This study aimed to predict the oil content and FFA using a multispectral imaging system with artificial neural network (ANN) and partial least square (PLS) algorithm. The system used three band pass filters with wavelengths of 710 nm, 800 nm and 830 nm, attached to a filter wheel in front of a monochrome camera. The acquisition and image processing used Python code. Mean Absolute Percentage Error (MAPE) was applied to calculate the accuracy of prediction results. The MAPE values were 21.62% and 25.48% for the oil content and FFA prediction using ANN algorithm and values were 20.94% and 7.5% for the oil content and FFA prediction using PLS algorithm, respectively. These results show the potential use of multispectral imaging for predicting oil content and FFA of oil palm FFB.
Keywords: Multispectral Imaging, Oil Palm FFB, Oil Content, Free Fatty Acid, ANN algorithms, PLS algorithms


Ketersediaan
#
Perpustakaan Universitas Riau 1703110184
1703110184
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1703110184
Penerbit
Pekanbaru : Universitas Riau - FISIP -FISIKA., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1703110184
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
tethi
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?