Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Komparasi Teknik Resampling Dan Hybrid Resampling Untuk Penanganan Klasifikasi Kelas Data Tidak Seimbang
Penanda Bagikan

CD Skripsi

Komparasi Teknik Resampling Dan Hybrid Resampling Untuk Penanganan Klasifikasi Kelas Data Tidak Seimbang

R. BAGINDA MAULANA /1903113173 - Nama Orang;

ABSTRACT
Class imbalance is a common problem in classification analysis, where one class of data is more abundant than the other. This study compares the performance of unbalanced data class handling techniques to overcome classification problems in three data types: simulation results from data, Germany credit card data, and housing and environmental health indicator data. The methods used to solve classification problems in unbalanced data classes are resampling techniques, namely SMOTE & Tomek Link, and hybrid resampling, SMOTE-Tomek. Based on the results of the application of the resampling technique, the results obtained that generated data that has been obtained by generating through simulation with the assumption of the normal distribution can classify data well without the resampling process with accuracy, precision, recall, F1 Score, AUC, and G-Mean values of 0.8994, 0.8999, 0.9992, 0.9470, 0.5021, and 0.0258, respectively. On Germany credit card data, the best classification results were achieved after the data was balanced using the SMOTE technique with an accuracy matrix value of 0.9016. In the housing and environmental health indicator data, the best classification results were achieved after the data was balanced using the SMOTE technique with an accuracy matrix value of 0.9998. Therefore, on the secondary data in this study, it can be concluded that the resampling technique has better performance than the hybrid resampling technique.
Keywords: Resampling technique, hybrid resampling, classification, unbalanced class data.


Ketersediaan
#
Perpustakaan Universitas Riau 1903113173
1903113173
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903113173
Penerbit
Pekanbaru : Universitas Riau – FMIPA – Statistika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903113173
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
TIAR
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TEKNIK RESAMPLING
  • BAB III METODE PENELITIAN
  • BAB IV KOMPARASI TEKNIK RESAMPLING
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?