Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Daerah Penangkapan Ikan Tuna Sirip Kuning (Thunnus Albacares) Menggunakan Machine Learning
Penanda Bagikan

CD Tesis

Prediksi Daerah Penangkapan Ikan Tuna Sirip Kuning (Thunnus Albacares) Menggunakan Machine Learning

MELA SARI / 2110246559 - Nama Orang;

Yellowfin tuna (Thunnus albacares) is a large pelagic fish that inhabits the
surface waters up to the upper boundary of the thermocline layer in the ocean.
This species holds significant economic value in Indonesia, especially in the
waters of West Sumatra. The identification of precise fishing grounds is crucial
for fishermen to enhance the efficiency and effectiveness of their fishing activities,
given the influence of dynamic oceanographic factors on the areas where
yellowfin tuna are caught.
The study utilizes five years' worth of yellowfin tuna catch data (2018-
2022) recorded in logbooks at the Samudera Bungus Fishing Port as training
data to develop a predictive model for yellowfin tuna fishing grounds. In addition,
environmental data such as sea surface temperature, surface salinity, chlorophylla
concentration, and sea level height obtained through Google Earth Engine
(GEE) are incorporated as predictor variables in the model.
The research aims to predict potential yellowfin tuna fishing grounds in
the waters of West Sumatra using machine learning technology, specifically by
applying the Random Forest algorithm. This algorithm is a key component of
species distribution modeling (SDM) or envelope modeling, estimating habitat
suitability across a region based on occurrence data and predictor variables in
the form of a model.
The findings of the study reveal that the presence of yellowfin tuna can be
predicted with a Habitat Suitability Index (HSI) ranging from 0 to 1. Yellowfin
tuna habitat suitability is observed during the transitional season II, with an Area
Under the Curve (AUC) value of approximately 0.958, indicating excellent test
data model results. Consequently, reinforcing monitoring and protection
measures for both habitat and fish populations is imperative to uphold habitat
quality and ensure the sustainability of the fish population.
Analysis conducted in QGIS indicates that the potential yellowfin tuna
fishing grounds in the waters of West Sumatra fluctuate across seasons,
measuring 10.96 km² during the west season, 11.25 km² during the first
transitional season, 11.41 km² during the east season, and 10.87 km² during the
second transitional season. The recommendation is to optimize fishing activities
during the east season, considering efficient resource allocation.
Keywords: Google Earth Engine, Random Forest, Habitat Suitability Index, Area
Under Curve, Potential Areas.


Ketersediaan
#
Perpustakaan Universitas Riau 2110246559
2110246559
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2110246559
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Ilmu Kelautan., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2110246559
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
ILMU KELAUTAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
FATAH
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II KAJIAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?