CD Skripsi
Menentukan Spektrum Dari Matriks Sylvester Dengan Vektor Eigen Kiri Yang Dipartisi Menjadi Matriks Blok 2 X 2
This final project discusses the Sylvester matrix of order (n + 1) (n + 1), the Sylvester matrix is a tridiagonal matrix that has main diagonal entries are real numbers, the upper subdiagonal entries are 1, 2, . . . , n while the subdiagonal entries the bottom is inversely proportional to the upper subdiagonal entry. Then calculate the spectrum and determinant of the Sylvester matrix by finding the eigenvalues and the left eigenvectors. To prove this, by partitioning the matrix into a block matrix 2 2, which is divided into two cases, namely when n is even and n is odd.
Keywords: Tridiagonal matrix, Sylvester matrix, spectrum, determinant
Tidak tersedia versi lain