Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Face Recognition Menggunakan Cnn Pada Buku Tamu Elektronik Di Badan Pusat Statistik Provinsi Riau
Penanda Bagikan

CD Skripsi

Implementasi Face Recognition Menggunakan Cnn Pada Buku Tamu Elektronik Di Badan Pusat Statistik Provinsi Riau

M. Imam Alvien Cenna Alnaza / 2007110645 - Nama Orang;

Traditional guestbook systems face challenges such as lost or damaged paper, long waiting times, and inconsistent data entries. While digital guestbooks have addressed some of these issues, repeated data entry by frequent visitors remains a problem. By implementing face recognition, visitors only need to fill in their identity during the first visit, with subsequent visits automatically recognized through facial features stored in the database. The implementation of face recognition using CNN in the electronic guestbook at the Central Bureau of Statistics (BPS) of Riau aims to improve the efficiency and accuracy of recording visitor identities. The biometric face recognition technology uses CNN, comprising face detection, face embedding, and face identification stages, chosen for its high accuracy in facial recognition. The CNN MediaPipe BlazeFace model is used for face detection, while facial feature extraction is performed by the CNN HSE FaceRes model. Face identification is conducted by measuring the distance between facial features using Square Euclidean Distance. Testing shows the system's accuracy reaches 100% for primary test data and 87% for secondary test data. Additionally, the time taken for face recognition is more efficient compared to manual entry, with an average time difference of 54.32 seconds and an efficiency of 74.48%. This implementation is expected to facilitate visitors, enhance administrative efficiency, and ensure the accuracy of visitor data at BPS Riau Province.

Keywords: Face Recognition, Electronic Guestbook, Convolutional Neural Network (CNN)


Ketersediaan
#
Perpustakaan Universitas Riau 2007110645
2007110645
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007110645
Penerbit
Pekanbaru : Universitas Riau - F. Teknik -Teknik Elektro., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007110645
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Vina
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?