Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Perbandingan Fungsi Pembobot Kernel Pada Geographically Weighted Negative Binomial Regression Dalam Memodelkan Kematian Bayi Indonesia
Penanda Bagikan

CD Skripsi

Perbandingan Fungsi Pembobot Kernel Pada Geographically Weighted Negative Binomial Regression Dalam Memodelkan Kematian Bayi Indonesia

Dea Febrianti / 2003113624 - Nama Orang;

Infant Mortality Rate (IMR) in Indonesia remains a significant challenge in achieving the Sustainable Development Goals (SDGs), particularly target 3.2 related to reducing newborn and under-five mortality. Unequal access to healthcare services and socioeconomic conditions across different regions in Indonesia result in varying IMR, necessitating spatial regression analysis to model and identify spatially contributing risk factors. This study aims to compare four adaptive kernel weighting functions, namely Gaussian, bisquare, tricube, and exponential, in modeling infant mortality in Indonesia in 2022 using Geographically Weighted Negative Binomial Regression (GWNBR) and to identify influencing factors. The analysis was conducted using 2022 infant mortality data as the response variable and seven predictor variables: low birth weight (X1), unattended births (X2), antenatal care visits (X3), vulnerable maternal age (X4), smoking mothers (X5), poverty (X6), and inadequate access to safe drinking water (X7). The results show that the adaptive exponential kernel produces the best model with the lowest AIC and RMSE values. Risk factors such as low birth weight, unattended births, antenatal care visits, vulnerable maternal age, poverty, and inadequate access to safe drinking water significantly influence the spatial distribution of infant mortality.
Keywords: Infant mortality, Geographically Weighted Negative Binomial Regression, kernel weighting function, Akaike Information Criterion, Root Mean Squared Error.


Ketersediaan
#
Perpustakaan Universitas Riau 2003113624
2003113624
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003113624
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003113624
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB 2 GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION
  • BAB 3 METODOLOGI PENELITIAN
  • BAB 4 PERBANDINGAN FUNGSI PEMBOBOT KERNEL PADA GWNBR DALAM MEMODELKAN KEMATIAN BAYI INDONESIA
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?