Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Sistem Prediksi Pemilihan Program Studi Menggunakan Algoritma Naïve Bayes Classifier Di Fakultas Teknik Universitas Riau
Penanda Bagikan

CD Skripsi

Sistem Prediksi Pemilihan Program Studi Menggunakan Algoritma Naïve Bayes Classifier Di Fakultas Teknik Universitas Riau

Muhammad Yogi Pratama / 1407123706 - Nama Orang;

Every year high school students (SMA) or the equivalent who have graduated will
continue their education to university. Choosing a Study Program when entering
the University level is a decision-making process that requires a lot of
consideration for prospective new students. Because the chosen S1 study program
is very diverse, students who are still confused will experience difficulties in
determining the choice of an S1 study program at the Faculty of Engineering, Riau
University. To help make this decision, it can be done by building a prediction
system using the Naïve Bayes Classifier Algorithm which utilizes the calculation of
future probability values based on previous experience. Student data which is the
input variable for this system is the type of school, gender, average report card
scores of Mathematics, Physics, Chemistry, Biology, Indonesian, and English from
Semester 1 to 5. In this study, observations, interviews, and literature study to
collect the data needed in the prediction process based on the previously selected
student data. After testing using test data against this Prediction System, the results
obtained an accuracy rate of 81.82%, with an error of 18.18% from 154 test data.
So from the results of the system testing, it is concluded that the Study Program
Selection Prediction System Using the Naïve Bayes Classifier Algorithm can make
it easier to provide references for prospective new students to determine the choice
of an S1 study program at the Faculty of Engineering, Riau University which will
be taken later on a Web-based.
Keyword : Study Program Prediction System, Naïve Bayes Classifier Algorithm,
Probability.


Ketersediaan
#
Perpustakaan Universitas Riau 07 04. 121 (0069)
07 04. 121 (0069)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 04. 121 (0069)
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2021
Deskripsi Fisik
xii, 29 hlm.; ill.: 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
07 04. 121 (0069)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?