Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan Convolutional Neural Network
Penanda Bagikan

CD Skripsi

Identifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan Convolutional Neural Network

ABDUL HAFIDZ / 1907113293 - Nama Orang;

ABSTRACT

Many cases of vision loss (such as those caused by infections, trauma, dangerous traditional medicines, diet-related disorders, prenatal Diseases, improper use or self-administration of topical therapy) are not always avoidable. Early Identification and proper treatment are essential for many Eye disorders, such as Diabetic retinopathy, to prevent irreparable vision loss. To detect Visual disturbances, one way is to check the fundus Image of the patient's Eye. Manual checking of fundus images requires high precision and a long time. So that various ways have begun to emerge to make it easier to identify the Image of the fundus, such as one of them, namely by Means of Deep learning. In this study, several CNN architectures were used to train fundus detection models such as Custom CNN, InceptionV3, VGG16 and VGG19. The dataset for this research model was obtained from the Kaggle site with a total of 511 images of ARMD, 1038 images of cataracts, 1098 images of Diabetic retinopathy, 1007 images of glaucoma, and 1074 images of normal. After training and testing the model, the highest accuracy was achieved by the VGG16 architecture with 91% accuracy, 91% precision, 90% recall and 90% F1-Score. Then the next test uses the fundus of patients who have been diagnosed by doctors from the Arifin Achmad Pekanbaru Hospital which totals 71 fundus images. Of the 71 images obtained from Arifin Achmad Hospital, there are 55 images of fundus that are predicted to be the same as the doctor's diagnosis.
Keywords: ARMD, fundus imagery, Convolutional Neural Network, custom, detection, glaucoma, Inception, cataracts, Diabetic retinopathy, VGG.


Ketersediaan
#
Perpustakaan Universitas Riau 1907113293
1907113293
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1907113293
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – Elektro., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1907113293
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?