Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Penerapan Association Rule Untuk Menganalisa Data Konsumen Kepemilikan Rumah Subsidi
Penanda Bagikan

CD Skripsi

Penerapan Association Rule Untuk Menganalisa Data Konsumen Kepemilikan Rumah Subsidi

JORDIANSAH SIMTO SINAGA / 1803113449 - Nama Orang;

ABSTRACT
Increasing population growth and increasingly limited land for housing needs has led to high public interest in housing loans so that they can pay installments every month. But problems that often occur are errors in determining the credit period and the number of installments paid each month causing credit arrears. This causes difficulties for developers in recommending services that are in accordance with the consumer's economy at PT. Semangat Jaya Sentosa enthusiasm for processing data manually. So to overcome this problem, companies need recommendations in the form of strategies obtained from consumer data at PT. Semangat Jaya Sentosa. This study aims to obtain Association Rules from consumer data and information on housing loans. The results of the Association Rules will form strategic recommendations for the developer. The attributes used are gender, status, occupation, district/city, credit period, and income. This study carried out 6 stages in obtaining Association Rules namely literature study, data collection, data selection, data cleaning, implementation of a priori algorithms, and interpretation. This study uses the Python programming language to find Association Rules from consumer housing loan data sets and through join and prune processes. This study uses consumer data for the period from January to December 2021 as many as 1,514 data with a minimum Support value of 30% and a minimum Confidence of 83% so as to produce a pattern of 18 Rules so that the highest value for the combination of 3 itemset is Pekanbaru, Lowerclient, 20 has a Support value of 0.4557 = 45.57 % and Confidence value 1 = 100%. The results of the Association Rules are then formed to recommend the best strategy for the developer and are expected to be able to overcome the problem of housing loans at PT. Semangat Jaya Sentosa.
Keywords: Apriori Algorithm, Association Rule Method,Consumer data patterns, Data mining, Home Ownership Loans


Ketersediaan
#
Perpustakaan Universitas Riau 1803113449
1803113449
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1803113449
Penerbit
Pekanbaru : Universitas Riau - FMIPA - Sistem Informasi., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1803113449
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
tethi
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?