Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Sistem Deteksi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Metode Faster R-Cnn Berbasis Web
Penanda Bagikan

CD Skripsi

Sistem Deteksi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Metode Faster R-Cnn Berbasis Web

Muhammad Fariz Naufal Ramadhan / 1903112272 - Nama Orang;

Identifying the level of maturity of Fresh Fruit Bunches is one of the steps in the palm oil harvesting process. The level of maturity of fresh fruit bunches is an important factor that determines the quality of palm oil production. In general, farmers can check FFB maturity manually by observing directly. Determining FFB maturity manually requires time and the expertise of a skilled farmer to ensure proper maturity. Faster R-CNN is a machine learning method that can be used to detect palm oil FFB objects quickly and accurately. By creating a detection system designed with UML and then using the Tensorflow 2.4 library for the Faster R-CNN Model and using flask to use model on web, the model can recognize the shape, color and edges of each TBS training data. Using 8590 TBS image datasets consisting of 6872 training data and 1718 test data trained in 50,000 steps with 64 batch sizes. The model can identify six levels of maturity of oil palm consisting of unripe, mature 1, mature 2, mature 3, late ripe, and empty bunches. The model training results have an accuracy of 72% with an IoU of 0.75 then an accuracy of 59% with an IoU of 0.50:0.95 and an accuracy of 86% with an IoU of 0.50

Keywords : Degree of maturity, Faster R-CNN, Flask, Oil palm, Object system, Tensorflow, Web


Ketersediaan
#
Perpustakaan Universitas Riau 1903112272
1903112272
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903112272
Penerbit
Pekanbaru : Universitas Riau – FMIPA – Sistem Informasi., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903112272
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • DAFTAR ISI
  • COVER
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II LANDASAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?