Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Analisis Sentimen Ulasan Mahasiswa Pada Sistem Edom Menggunakan Model Bahasa Berbasis Transformer
Penanda Bagikan

CD Skripsi

Analisis Sentimen Ulasan Mahasiswa Pada Sistem Edom Menggunakan Model Bahasa Berbasis Transformer

Hendy Saputra / 2003113132 - Nama Orang;

Reviews and opinions from users play a crucial role in enhancing the quality and performance of various services and platforms, including higher education institutions. Student reviews can be used as an evaluation material to improve the quality of teaching, campus facilities, and the overall learning experience. The EDOM system is an online platform that facilitates students to provide reviews about their learning experiences. However, this system is not yet equipped with an automatic review analysis system. Manual analysis of student reviews can consume significant time and effort, as it requires human labor to read and classify each review. This study proposes the use of Transformer-based language models for sentiment analysis. Transformer-based language models are a type of neural network capable of learning the relationship between words in a sentence regardless of word order. This study tested four different Transformer-based language models, namely M-BERT, IndoBERT, RoBERTa Indonesia, and GPT-2 Indonesia. The dataset used in this study consisted of 31,600 student reviews from the EDOM system at Riau University, which were then labeled as positive or negative. The research results show that the IndoBERT-base-uncased model performed the best, with an MCC value of 88.2%, accuracy of 94.1%, precision of 94.5%, recall of 93.2%, and f1-score of 93.8%. Based on these results, it can be concluded that the IndoBERT model is the most effective Transformer-based language model for sentiment analysis of student reviews.

Keywords: Machine Learning, Natural Language Processing, Sentiment Analysis, Transformer, EDOM


Ketersediaan
#
Perpustakaan Universitas Riau 2003113132
2003113132
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003113132
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003113132
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?