Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pemodelan Peramalan Curah Hujan Menggunakan Statistical Downscaling Dan Principal Component Regression (Pcr) Di Kabupaten Siak
Penanda Bagikan

CD Skripsi

Pemodelan Peramalan Curah Hujan Menggunakan Statistical Downscaling Dan Principal Component Regression (Pcr) Di Kabupaten Siak

Elsa Riesta Alika / 2003134740 - Nama Orang;

Indonesia is a country with a tropical climate that has rainy and dry seasons, so it requires efforts to cope with climate change against the handling of agricultural crops, especially palm coconut. Weather forecast modeling could use data from the Global Circulation Model (GCM). Statistical downscaling is a method of adapting global circulation models to variable data on a local scale. The problem of multicolinearity is a common one in statistical downscaling modeling. A method that can be used in dealing with this multicolinearity problem is the use of Principal Component Regression (PCR) by eliminating unstable structures in the model and reducing the variance of the regression coefficient. This research aims to obtain rainfall prediction modeling using statistical downscaling and PCR, which can provide an understanding of weather change preparedness. The observation data used is rainfall data located at the location of Libe Estate of PT. SMART Tbk Division SMART Research Institute in 2013–2022, as a response variable. Predictor variables use GCM output data with CMIP6 simulation. The study shows that PCR modeling with RMSE 97.06–131.69 has a R^2 value of around 14.25%-20.49%. PCR modeling with dummy variables can improve the performance of models with a RMSE value of only 24.46 - 35.83 with R^2 value of 89.02% - 90.24%.
Keywords: Statistical downscaling, principal component regression, global circulation model (GCM), multicolinearity, rainfall.


Ketersediaan
#
Perpustakaan Universitas Riau 2003134740
2003134740
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003134740
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003134740
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • ABSTRAK
  • DAFTAR ISI
  • 1. PENDAHULUAN
  • 2. TINJAUAN PUSTAKA
  • 3. METODOLOGI PENELITIAN
  • 4. PEMODELAN PERAMALAN CURAH HUJAN MENGGUNAKAN STATISTICAL DOWNSCALING DAN PRINCIPAL COMPONENT REGRESSION (PCR) DI KABUPATEN SIAK
  • 5. KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
  • COVER
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?