Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Rangkaian Otomasi Deteksi Cacat Pada Brondolan Buah Kelapa Sawit Menggunakan Algoritma You Only Look Once
Penanda Bagikan

CD Skripsi

Rangkaian Otomasi Deteksi Cacat Pada Brondolan Buah Kelapa Sawit Menggunakan Algoritma You Only Look Once

Annisya Madani/2003110320 - Nama Orang;

Automation is a key element in the concept of Industry 4.0, aims to enhance efficiency and flexibility in production processes. This study built an automated circuit for defect detection of oil palm fruitlets using You Only Look Once (YOLO) algorithm. YOLO was chosen for its ability to detect objects in real-time with high accuracy. This study involves several stages, including the preparation of tools and materials, data acquisition and annotation to build a dataset, building a YOLO detection model, model training and testing, and design an arduino based automation circuit. The dataset consists of two class of oil palm fruitlets, ripe and rotten. The model used YOLOv8-n algorithm, which was trained and tested to detect these two classes using Google Colab. Model performance analysis used was conducted using a confusion matrix with parameters including precision, recall, and F1-score. The analysis results obtained precision of 96.4%, recall of 95.8%, and F1-score of 96.1% for ripe class, and precision of 98.8%, recall of 92.0%, and F1-score of 95.3% for the rotten class. The overall detection system model had the highest accuracy of 94.4% with a mean Average Precision (mAP) of 95.9%. The automation circuit used computer vision integrated with an an arduino board with servo motor to separate the fruitlets based on the detection results. The automation circuit had a high accuracy of 95.4% with an error accuracy of 4.5%. The results show that circuit and the model potential to be used to sorting oil palm fruitlets based on two classes, ripe and rotten.



Keywords : Defect Detection, Oil Palm Fruitlets, Computer Vision, YOLO Algorithm,Automation Circuit, Analysis.


Ketersediaan
#
Perpustakaan Universitas Riau 2003110320
2003110320
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003110320
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003110320
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
mardiah
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • HALAMAN JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?