Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Deteksi Kematangan Tandan Buah Segar Kelapa Sawit Secara Real-Time Berbasis Video Dan Algoritma Yolo
Penanda Bagikan

CD Skripsi

Deteksi Kematangan Tandan Buah Segar Kelapa Sawit Secara Real-Time Berbasis Video Dan Algoritma Yolo

Tyesi Noflika Sari / 2003112800 - Nama Orang;

Determining the ripeness level of oil palm Fresh Fruit Bunches (FFBs) using computer vision and machine learning has been extensively studied, especially using the YOLO (You Only Look Once) algorithm. Its applications are typically employed for detecting FFBs on trees or piled on the ground. However, the detection of stacked FFBs moving on a conveyor has yet to be done. The objective of this study is to use a computer vision system for detecting the ripeness level of stacked FFBs using two YOLO algorithms to build a detection model, train and test the model, validate the model using video, and measure the model's performance. The determination of the average RGB intensity value for the two FFB ripeness levels was also conducted. An RGB camera was used to acquire image data for oil palm FFBs. The model was built using the YOLOv8l-Seg and YOLOv8x-Seg algorithms, which can detect FFB in real-time. The samples consist of 30 FFBs, divided into ripe and unripe categories. The results showed that the computer vision system is capable of detecting the ripeness of stacked FFBs. Both algorithms can detect the ripeness levels with higher accuracy and speeds; however, YOLOv8x-Seg obtained a higher accuracy, and YOLOv8l-Seg resulted in a higher speed. The results also showed that the average RGB intensity for ripe FFBs is higher than that of unripe FFBs.

Keywords: Oil palm FFB, ripeness detection, computer vision, deep learning, YOLOv8, RGB intensity


Ketersediaan
#
Perpustakaan Universitas Riau 2003112800
2003112800
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003112800
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003112800
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
  • RIWAYAT HIDUP
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?