Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Kandungan Beta Karoten Pada Tandan Buah Segar Kelapa Sawit Menggunakan Pencitraan Multispektral
Penanda Bagikan

CD Skripsi

Prediksi Kandungan Beta Karoten Pada Tandan Buah Segar Kelapa Sawit Menggunakan Pencitraan Multispektral

Robby Ginawan / 2003114233 - Nama Orang;

The quality of Crude Palm Oil (CPO) can be determined through the assessment of beta-carotene content in Fresh Fruit Bunches (FFB) of oil palm. This study aims to utilize an LED-based multispectral imaging system to predict the beta-carotene content in FFB. The imaging system employs eight LED wavelengths (680 nm, 700 nm, 750 nm, 780 nm, 810 nm, 850 nm, 880 nm, and 900 nm) as light sources. A Python-based program is used for image acquisition and processing, as well as object detection modeling. Recorded multispectral images are processed to obtain the relative reflectance intensity values for each wavelength. Support Vector Machine (SVM) method is used to predict the beta-carotene content in FFB. Beta- carotene levels measured using Soxhlet extraction range from 141 to 286 ppm. The Principal Component Analysis (PCA) method is applied to recognize reflectance intensity patterns in multispectral images for two ripeness categories based on beta- carotene values. Support Regression Matrix is employed to analyze the performance of the predictive model. The study results indicate that the relative reflectance intensity of ripe FFB is 17.74% higher than unripe FFB across all LED wavelengths. PCA successfully separates the two ripeness levels of FFB with a cumulative variance of 97.41% (PC1 = 91.20% and PC2 = 6.21%). The SVM model achieves a prediction accuracy of 95%, with a Mean Absolute Error (MAE) of 0.04, Mean Squared Error (MSE) of 0.007, and a coefficient of determination (R²) of
0.97. The results demonstrate the potential of LED-based multispectral imaging for predicting beta-carotene content in FFB
Keywords: Multispectral imaging, beta-carotene content, Principal Component Analysis (PCA), Support Vector Machine (SVM)


Ketersediaan
#
Perpustakaan Universitas Riau 2003114233
2003114233
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003114233
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003114233
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?