Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

CD Skripsi

Prediksi Respons Struktur Jembatan Beton Prategang Berdasarkan Spektrum Gempa Indonesia Dengan Metode Jaringan Saraf Tiruan

ANDI WIJAYA / 1107114365 - Nama Orang;

The design of prestressed concrete bridge on high-risk seismic zones should consider the responses characteristic of the bridge structure. The structural responses such as displacement, velocity, and acceleration which are based on Indonesia’s Seismic Hazard Map, could be predicted by using Artificial Neural Network (ANN) method. In this research, the bridge model was adopted from the real prestressed concrete bridge located in Kecamatan Tapung, Kabupaten Kampar to analyze the bridge structural response and evaluate the potential of ANN to predict the results. The bridge structure was modeled in finite element software, then the response spectrum analysis was performed based on RSNI 2833-201X. For the seismic locations, 34 capital cities and 5 other big cities in Indonesia were chosen. Then by adding 3 soil conditions, 117 data sets were produced. Based on the analysis results, the largest structural response was observed in Palu City with 0,0738 m of displacement, 1,8406 m/sec of velocity, and 24,7666 m/sec2 of acceleration. For the ANN analysis, 102 data sets were used in training phase and the remaining 15 data sets were used in testing phase. After the training and testing process, the ANN model has the potency to predict bridge structural response at 93 to 97% of prediction rate and the calculated Mean-Squared Errors (MSE) is as low as 0,00019. This indicates that the ANN model adopted in this research is capable of predicting the structural response of bridge with high accuracy.
Keywords : prestress concrete bridge, structural responses, Artificial Neural Network (ANN), response spectrum


Ketersediaan
#
Perpustakaan Universitas Riau 07 01. 116 (0024)
07 01. 116 (0024)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 01. 116 (0024)
Penerbit
Pekanbaru : Universitas Riau - Fakultas Teknik - Teknik Sipil., 2016
Deskripsi Fisik
xvi, 115 hlm.: ill.; 29 cm
Bahasa
ISBN/ISSN
-
Klasifikasi
07 01. 116 (0024)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?