CD Skripsi
Generalisasi Rumus Euler Yang Memiliki Ekspansi Menyerupai Deret Fourier
This article discusses the generalization of the Euler formula having an expansion
resembling a Fourier series. This formula can be applied in calculating the
value of an in_nite series of real numbers. In addition, the given identity of the
generalization formula Euler that can be applied to the sum of in_nite series
algebra, and the process of integrating the Brownian motion and Brownian bridge
functions. This article is a review article of Swanepoel [Journal of Number
Theory, 149 (2015), 46-56].
Keywords: Bernoulli numbers, Bernoulli polynomials, identities, trigonometric
series
Tidak tersedia versi lain