Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Kadar Particulate Matter (Pm10)Untuk Pemantauan Kualitas Udara Menggunakan Jaringan Syaraf Tiruan
Penanda Bagikan

CD Skripsi

Prediksi Kadar Particulate Matter (Pm10)Untuk Pemantauan Kualitas Udara Menggunakan Jaringan Syaraf Tiruan

WIMA PUSPITA / 1603110107 - Nama Orang;

Air pollution in Pekanbaru City, specifically at PM10 levels, occurs every year. A PM10 level prediction analysis was conducted using Artificial Neural Network backpropagation based on weather parameters. The goal is to monitor air quality as an anticipatory step. The data used was collected based on monthly data from the year of 2014 to 2018, including PM10 data, precipitation, wind speed, air temperature, humidity and sun exposure period. This method used R2015a matlab software for data programming, Microsoft Excel is used for data grouping and sharing, and Sigmaplot is utilized for data graphics. The architecture used consists of 5 input layers using the Log Activation function, 5 hidden layers using the Log Activation function, and 1 transformation layer using Purelin function. This analysis divides the data into two sections, namely data from 2014 to 2017 as training data and data from 2018 as test data. The results of the network training study, namely the CGB train, provided MSE values of -0.0705 and the best PM10 estimates for the network testing in February, with an error percentage of -2.0526 per cent with a broad PM10 of 44.222µm/m3 and a PM10 BMKG data of 45.136µm/m3. Although the forecast results for artificial neural networks with the biggest error namely 91.752 per cent in November. The average forecast error for artificial neural networks for 1 year was 26.9062 per cent. The magnitude of the error in November due to the high rainfall during that month, so that it has reduced the PM10 BMKG level.

Keywords : Particulate Matter (PM10), Artificial Neural Network, Back Propagation, Prediction.


Ketersediaan
#
Perpustakaan Universitas Riau 03 01.120 (0019)
03 01.120 (0019)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
03 01.120 (0019)
Penerbit
Pekanbaru : Universitas Riau – FMIPA – FISIKA., 2020
Deskripsi Fisik
xv, 48 hlm.: ill.: 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
03 01.120 (0019)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ELFITRA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II LANDASAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?