Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pemodelan Mixed Geographically Weighted Regression Dan Metode Analitycal Hierarchy Process Pada Kasus Kemiskinan Provinsi Riau
Penanda Bagikan

CD Tesis

Pemodelan Mixed Geographically Weighted Regression Dan Metode Analitycal Hierarchy Process Pada Kasus Kemiskinan Provinsi Riau

MIA AMIATI / 1610247814 - Nama Orang;

One of the problems in Riau Province is poverty. An important aspect in
overcoming poverty is determining the measurement value. The poverty of an
area and its influencing factor will be different in each region. The difference
can be caused by geographical aspects. Therefore, poverty resolution policies
can also be different in each region so we need a model that can be used to predict
poverty by considering spatial references, one of which is the Geographically
Weighted Regression (GWR) model. There is a problem in the GWR model
that is if some independent variables do not vary spatially, so the GWR model
is developed to be a Mixed Geographycally Weighted Regression (MGWR)
model. Data used in the GWR and MGWR models are poverty rates in Riau
Province (y) with five factors (x). The decision support methods in the form
of recommendations using Analitycal Hierarchy Process (AHP) with estimation
method used is Weighted Least Square (WLS). The weighting function used
is the kernel adaptive exponential. The optimal bandwidth selection uses the
Cross Validation (CV ) method. The best selection criteria used are r2, AIC
and RMSE. The results show that the MGWR model with exponential adaptive
kernel weighting function is better than the GWR model and the AHP method
recommendation areas in the priority of handling poverty are Inhil, Inhu, Kuansing,
Rohil, Meranti, Rohul, Kampar, Bengkalis, Pekanbaru, Pelalawan, Siak,
and Dumai.
Keywords: Adaptive, AHP, Bandwidth, Eksponential, GWR, MGWR


Ketersediaan
#
Perpustakaan Universitas Riau 10 15. 220 (0005)
10 15. 220 (0005)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
10 15. 220 (0005)
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Matematika., 2020
Deskripsi Fisik
xiii, 83 hlm,; ill.: 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
10 15. 220 (0005)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
MATEMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
FATAH
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II KAJIAN TEORI
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?