Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Tingkatan Penggunaan Transportasi Massal Masyarakat Indonesia Menggunakan Metode Arima
Penanda Bagikan

CD Skripsi

Prediksi Tingkatan Penggunaan Transportasi Massal Masyarakat Indonesia Menggunakan Metode Arima

Dzaki Mohammad Haspian /2103125610 - Nama Orang;

Mass transportation plays an important role in community mobility in Indonesia. Therefore, predicting the level of use of mass transportation is crucial in planning and policy making. This study aims to forecast the number of mass transportation users in Indonesia using the Autoregressive Integrated Moving Average (ARIMA) method. The results of this study show that the ARIMA (1,1,0) model on aircraft data provides better predictive value results compared to the other two models, namely the ARIMA (0,1,1) model and the ARIMA (2,1,0) model. The ARIMA (1,1,0) model has been successfully tested significant with a p-value of 0,0635 smaller than the alpha value of 0,10 accompanied by the lowest Akaike Information Criterion (AIC) value of 1368,6275 and evaluation of model accuracy measurement using Root Mean Square Error (RMSE) of 669.218. And in the train data, the ARIMA (0,1,0) model provides the best predictive value results compared to the other two models, namely the ARIMA (0,1,1) model and the ARIMA (1,1,0) model. The ARIMA (0,1,0) model has been successfully tested significant with a p-value of 0,0001745 smaller than the alpha value of 0,05 accompanied by the lowest Akaike Information Criterion (AIC) value of 1489,44 and evaluation of model accuracy measurement using Root Mean Square Error (RMSE) which is 2.542.836.

Keywords: ARIMA, Plane, Prediction, Train, Transportation


Ketersediaan
#
Perpustakaan Universitas Riau 2103125610
2103125610
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103125610
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103125610
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?