Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Penerapanmetode Analisis Komponen Utama 
Dan Biplot Pada Indikator Kesejahteraan Rakyat Di Indonesia
Penanda Bagikan

CD Skripsi

Penerapanmetode Analisis Komponen Utama Dan Biplot Pada Indikator Kesejahteraan Rakyat Di Indonesia

FADLIKA ARSY RIZALDE / 1803113039 - Nama Orang;

welfare of the people is something that every country wants to achieve,
including Indonesia. This is certainly a special concern for the government to
achieve people's welfare in each province. Many factors that affect people's
welfare based on people's welfare indicators need an analysis that can see the
relationship between two or more variables, namely multivariate analysis, one of
which is the Principal Component Analysis (PCA) method. This study aims to
reduce the variables so that a principal component is formed which still represents
the original variable information from the people's welfare indicator data using the
PCA method and make a biplot based on the PCA results. This study uses 10
variables based on indicators of community welfare, namely population,
employment, housing and the environment, education, and information and
communication technology. By using the covariance variance matrix in the PCA
analysis stage, three principal component are obtained with a total cumulative
variance of 85% which can explain the overall information of the original
variables. Furthermore, biplot analysis was carried out to visualize the two PC, so
that four groups were formed to describe the relationship between provinces and
variables with a biplot goodness test result of 77%.
Keywords: Multivariate analysis, principal component analysis, variance
covariance matrix, biplot, indicators of people's welfa


Ketersediaan
#
Perpustakaan Universitas Riau 1803113039
1803113039
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1803113039
Penerbit
Pekanbaru : Universitas Riau - FMIPA - STATISTIKA., 2022
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1803113039
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Deti
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB 1 PENDAHULUAN
  • BAB II ANALISIS KOMPONEN UTAMA, ANALISIS BIPLOT, DAN INDIKATOR KESEJAHTERAAN RAKYA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV METODE ANALISIS KOMPONEN UTAMA DAN BIPLOT PADA INDIKATOR KESEJAHTERAAN RAKYAT DI INDONESIA
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?