Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pemodelan Regresi Logistik Biner Dengan Pendekatan Bayesian Markov Chain Monte Carlo : Kasus Indeks Kedalaman Kemiskinan Di Indonesia Tahun 2021
Penanda Bagikan

CD Skripsi

Pemodelan Regresi Logistik Biner Dengan Pendekatan Bayesian Markov Chain Monte Carlo : Kasus Indeks Kedalaman Kemiskinan Di Indonesia Tahun 2021

HUSNA SAVIRA /1903113006 - Nama Orang;

ABSTRACT
The Poverty Gap Index (PGI) is the average expenditure gap of each poor population towards the poverty line. This study aims to model PGI data using binary logistic regression with a classical approach using the Maximum Likelihood Estimation (MLE) method and a Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. MCMC is a popular method for obtaining information about the distribution, especially for estimating the posterior distribution in Bayesian inference with the Metropolis-Hasting algorithm. Factors that have a significant influence on the PGI in Indonesia using the Bayesian approach and the classical approach are the same, namely Life Expectancy and per capita expenditure. Based on the results of the classification with training data of 80% and test data of 20%, a classification accuracy of 82.69% was obtained in the Bayesian approach, whereas with the classical approach, a classification accuracy of 78.84% was obtained. The Bayesian approach is better than the classical approach because the accuracy value in the Bayesian approach is better than the classical approach.
Keywords: PGI, Binary Logistic Regression, MLE, Bayesian, MCMC, Metropolis-Hasting Algorithm, and Classification.


Ketersediaan
#
Perpustakaan Universitas Riau 1903113006
1903113006
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903113006
Penerbit
Pekanbaru : Universitas Riau – FMIPA – Statistika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903113006
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
TIAR
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II BAYESIAN
  • BAB III METODE PENELITIAN
  • BAB IV PEMODELAN REGRESI
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • DAFTAR ISI
  • JUDUL
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?