Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Perbandingan Klasifikasi Status Gizi Balita Di Indonesiamenggunakan Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization
Penanda Bagikan

CD Skripsi

Perbandingan Klasifikasi Status Gizi Balita Di Indonesiamenggunakan Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization

Fitria Ramadhani / 1903113257 - Nama Orang;

Children under the age of five are the most vulnerable demographic in terms of nutrition and health within a community. The health of toddlers is widely assessed based on their nutritional status, determined through a comparison of weight and length/height measurements using Child Anthropometry standards. This study aims to predict the nutritional status of toddlers in cities and districts across Indonesia using the Backpropagation and Learning Vector Quantization algorithms. For this purpose, a dataset consisting of 514 cities and districts in Indonesia was analyzed and categorized into four classes of nutritional status. Using 80% of the data for training and 20% for testing, the classification accuracy of the Backpropagation algorithm with a 2-neuron hidden layer was 77.8%. Meanwhile, the Learning Vector Quantization algorithm, with a 9-size codebook, achieved a classification accuracy of 80.77%. This research sheds light on the importance of accurately predicting and addressing the nutritional status of toddlers, particularly in urban and rural areas in Indonesia. The findings from this study could contribute to targeted interventions aimed at improving the health and well-being of this vulnerable age group.

Keywords: Backpropagation, Learning Vector Quantization, Nutritional Status.


Ketersediaan
#
Perpustakaan Universitas Riau 1903113257
1903113257
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903113257
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903113257
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • 1. PENDAHULUAN
  • 2. JARINGAN SYARAF TIRUAN DAN STATUS GIZI ANAK
  • 3. METODOLOGI PENELITIAN
  • 4. ANALISIS BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION TERHADAP PENGKLASIFIKASIAN STATUS GIZI BALITA INDONESIA
  • 5. KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?