Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Penerapan Algoritma Lightgbm Dengan Optimisasi Hiperparameter Pada Klasifikasi Emisi Gas Rumah Kaca
Penanda Bagikan

CD Skripsi

Penerapan Algoritma Lightgbm Dengan Optimisasi Hiperparameter Pada Klasifikasi Emisi Gas Rumah Kaca

Rini Latifah / 2003111099 - Nama Orang;

ABSTRACT
The rise in global greenhouse gas emissions is a serious problem as it can lead to global warming that affects many areas of life, such as droughts and rising seawater. Knowing the classification of future greenhouse gas emissions levels can help in policy planning to minimize the impact. In this study, the classification of greenhouse gas emission levels was done using the lightGBM method by optimizing the learning rate, max depth, and n estimators using the grid search method. The analysis was made using two types of data, namely simulation data and emission data. The simulation was used to evaluate the hyperparameter performance of the lightGBM method, and the greenhouse gas emissions data was used to obtain the best combination in classification. Based on the results of the simulation on the lightgbm method that has been done on the learning rate parameters, the max depth and n estimators for each dataset used do not depend on the height or lowness of the parameter value but instead depend on the correct combination of parameter values to get the best model performance results. Simulation results also showed that increasing the parameter value can initially improve the model's performance, but at certain values, it can lead to a decrease in the performance of such models. In general, the accuracy, specificity, and MAE values do not consistently increase or decrease when the third parameter values are raised, but on the learning rate and max depth parameters, there is a decreasing pattern for the sensitivity values. Based on greenhouse gas emission data, it is obtained that the best parameters are learning rate = 0,1, max depth = 7, and n estimators = 500, with accurate values of 99,15%, sensitivities of 99,81%, and specificity of 97,99%, while MAE is 0,0085.

Keywords: Classification, LightGBM, Grid Search, Hyperparameter, Greenhouse Emissions
 


Ketersediaan
#
Perpustakaan Universitas Riau 2003111099
2003111099
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003111099
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003111099
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • 1. PENDAHULUAN
  • 2. EMISI GAS RUMAH KACA, PRE-PROCESSING DATA, DAN PROSES DATA
  • 3. METODOLOGI PENELITIAN
  • 5. KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
  • BAB 4 METODE
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?