Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Data Mining Menggunakan Algoritma Xgboost Dalam Menentukan Kelompok Uang Kuliah Tunggal Pada Mahasiswa Ilmu Komputer Universitas Riau
Penanda Bagikan

CD Skripsi

Implementasi Data Mining Menggunakan Algoritma Xgboost Dalam Menentukan Kelompok Uang Kuliah Tunggal Pada Mahasiswa Ilmu Komputer Universitas Riau

Muhammad Alfares/1903113745 - Nama Orang;

One of the most crucial tasks for universities is to make accurate predictions regarding single tuition fees (UKT). This is particularly relevant for Riau University, where the objective is to determine UKT for Computer Science students. The aim of this research is to develop a prediction model that is effective in determining a student's UKT based on a number of related factors. The data set used in this study consisted of 772 student samples, which underwent a pre-processing process to ensure readiness for analysis, including the removal of irrelevant variables. The Cross-Industry Standard Process for Data Mining (CRISP-DM) method was employed as the framework for this study. The XGBoost model was trained and evaluated using cross-validation techniques and accuracy, precision, recall, f1-score. The results demonstrated that the XGBoost model was capable of accurately predicting UKT with an accuracy of 72.59%, precision of 72.53%, recall of 73.30%, and F1-score of 72.77%. This finding suggests that the utilisation of the XGBoost algorithm can be an effective tool to assist universities in setting more equitable and data-driven UKT. Furthermore, this research provides a foundation for the development of additional UKT prediction models that utilise a more diverse data set.
Keywords: Confusion Matrix, CRISP-DM, Single Tuition Fee, XGBoost.


Ketersediaan
#
Perpustakaan Universitas Riau 1903113745
1903113745
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1903113745
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1903113745
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
mardiah
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • HALAMAN JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?