Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Perbandingan Algoritma K-Nearest Neighbor Dan Random Forest Dalam Memprediksi Laju Pertumbuhan Ekonomi Kabupaten/Kota Pulau Sumatera
Penanda Bagikan

CD Skripsi

Perbandingan Algoritma K-Nearest Neighbor Dan Random Forest Dalam Memprediksi Laju Pertumbuhan Ekonomi Kabupaten/Kota Pulau Sumatera

Shelly Angraini/2003113645 - Nama Orang;

Sumatra Island is the third largest island in Indonesia. The potential for economic growth in various regencies/cities on this island is enormous, driven by leading sectors such as mining, agriculture, plantations, and tourism. However, from 2019 to 2023, the economic growth rate of regencies/cities in Sumatra experienced fluctuations, indicating that the community and government were not yet ready to increase the economic growth rate. This study aims to obtain the best method for predicting the economic growth rate of regencies/cities in Sumatra by comparing the K-Nearest Neighbor (KNN) and Random Forest algorithms. The data used in this study is data that affects the economic growth rate of regencies/cities in Sumatra from 2019 to 2023, taken from the Central Statistics Agency (BPS) of regencies/cities in Sumatra. The results obtained from this study are that Random Forest is the best algorithm for predicting the economic growth rate of regencies/cities in Sumatra. This is based on the Random Forest's ability to capture patterns in data quite well, namely relatively stable fluctuations around the average value, while KNN produces predicted values that are far from the actual values. This is supported by the value of the Mean Absolute Percentage Error (MAPE) prediction accuracy in the best Random Forest model, which is included in the category of fairly good forecasting with a MAPE value of 25.56%, so the accuracy is 74.44%.
Keywords: Economic growth rate, Prediction, K-Nearest Neighbor, Random forest, Mean Absolute Percentage Error.


Ketersediaan
#
Perpustakaan Universitas Riau 2003113645
2003113645
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003113645
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003113645
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
mardiah
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • HALAMAN JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV ANALISIS LAJU PERTUMBUHAN EKONOMI MENGGUNAKAN K-NEAREST NEIGHBOR (KNN) DAN RANDOM FOREST
  • BAB V HASIL PENELITIAN DAN PEMBAHASAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?