Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi Tingkat Kematangan Buah Pisang Cavendish Menggunakan Convolutional  Neural Network
Penanda Bagikan

CD Skripsi

Klasifikasi Tingkat Kematangan Buah Pisang Cavendish Menggunakan Convolutional Neural Network

Wahyudi Nurzulivan / 2003113202 - Nama Orang;

The Cavendish banana is an important agricultural commodity in the farming industry. The maturity level of Cavendish bananas is a critical factor influencing the fruit's durability and quality. A Convolutional Neural Network (CNN) method was used in this study to facilitate the classification of Cavendish banana maturity levels. The model utilized 800 training data points, 200 validation data points, under two conditions: original and modified layers, with the modified condition including four additional dense layers. Six CNN models were developed using three base model architectures: MobileNet, DenseNet201, and InceptionV3. The batch size used was 32, with an image size of 224 x 224, and a size of 299 x 299 specifically for InceptionV3. The model’s optimizer was configured with Adam, using a learning rate of 0.001 and Early Stopping as a callback. Model training was conducted with a maximum of 50 epochs and 25 steps per epoch. The coding was implemented in Python using the TensorFlow library. Based on test results, the DenseNet201 model achieved better accuracy, and precision than other models in the original, with highest accuracy of 0.9444, and the average precision in the original condition was higher at 0.9466, compared to the modified condition. Therefore, the CNN-based DenseNet201 model can be used as an effective tool for classifying the maturity level of Cavendish bananas.

Keywords: Classification, Maturity Level, Convolutional Neural Network, Cavendish Banana, CNN Model


Ketersediaan
#
Perpustakaan Universitas Riau 2003113202
2003113202
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003113202
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2024
Deskripsi Fisik
-
Bahasa
ISBN/ISSN
-
Klasifikasi
2003113202
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?