Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Penggunaan Energi Listrik Di Provinsi Riau Menggunakan Metode Long Short-Term Memory
Penanda Bagikan

CD Skripsi

Prediksi Penggunaan Energi Listrik Di Provinsi Riau Menggunakan Metode Long Short-Term Memory

T. Afdhol Dzaki Algafari / 2103113576 - Nama Orang;

The growth of electricity energy consumption continues to increase every year, requiring a reliable prediction system to support effective energy planning and management. This research aims to predict electricity consumption in Riau Province using the Long Short-Term Memory (LSTM) method with deep learning algorithms and to determine the accuracy of this method in predicting electricity demand. The data used is historical monthly electricity consumption data in Riau Province from October 2022 to December 2024, totaling 27 rows of data, supported by average temperature data from BMKG and monthly electricity customer data. In this study, the dataset division used is 70% for training data and 30% for testing data. This LSTM model is designed by performing hyperparameter tuning to obtain optimal parameters in the form of a two-layer LSTM architecture with LSTM1 (256 units) and LSTM2 (128 units), dense layer (32 units), learning rate (0.01) and number of epochs (68) to obtain the best prediction results. Model performance evaluation uses Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics. The research results show that the RMSE value (16.36) with good accuracy category and MAPE percentage (1.7%) with excellent accuracy category. It can be concluded that the model successfully predicts electricity consumption in Riau Province.

Kata Kunci: Deep Learning, Electricity Consumption Forecasting, hyperparameter tuning, LSTM, Riau Province.


Ketersediaan
#
Perpustakaan Universitas Riau 2103113576
2103113576
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103113576
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103113576
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?