Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Deteksi Kebocoran Dan Sumbatan Pipa Menggunakan Sinyal Getaran Pada Pipa Bertekanan Dengan Sensor Adxl 335
Penanda Bagikan

CD Skripsi

Deteksi Kebocoran Dan Sumbatan Pipa Menggunakan Sinyal Getaran Pada Pipa Bertekanan Dengan Sensor Adxl 335

Dirga Hardi Rama / 2007113874 - Nama Orang;

ABSTRACT
Pipes are widely used for the transportation of liquids from one place to another, commonly found in domestic and industrial areas. Piping systems are becoming increasingly important for energy supply, economic activities, industry, the social sector, and other aspects of life in most countries because they are widely used for the distribution of water, oil, gas, and others. Pipeline damage can be caused by natural disasters, corrosion, third-party damage, mechanical failure, and others, thus requiring special monitoring and management actions for cost-saving and environmental reasons. One of the most reliable ways to detect early symptoms of blockage and leakage in pipeline systems is vibration analysis, which is currently the most commonly used method. In this study, damage detection was carried out on a pressurized pipe attached to the wall in the form of blockages and leaks using vibration signals with the ADXL335 accelerometer sensor based on Arduino. The accelerometer captures vibration signals generated from fluid flow driven by an electric pump. The data obtained by the accelerometer is then recorded and processed into frequency and amplitude values, with frequency values ranging between 51 – 52.5 Hz. This study uses three machine learning models for classifying the types of damage and detecting the position of the damage in the pipe, namely Decision Tree, K-Nearest Neighbors, and Support Vector Machine. The K-Nearest Neighbors-based model has the highest accuracy rate with a peak value of 95%, followed by the Decision Tree model with a highest accuracy of 90%, while the Support Vector Machine model cannot be used as a classification model due to its very low accuracy of around 55%. Damage position can also be detected using the regression method in machine learning with the Gaussian Process Regression model, which has the highest error percentage of 4.71%.
Keywords : Pipe Damage, Vibration Signal, Frequency, Amplitude, Machine Learning


Ketersediaan
#
Perpustakaan Universitas Riau 2007113874
2007113874
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2007113874
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – mesin., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2007113874
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK MESIN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?