Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Analisis Sentimen Terhadap Pelaksanaan Pembatasan Sosial Berskala Besar (Psbb) Pada Masa New Normal Menggunakan Metode Support Vector Machine (Svm)
Penanda Bagikan

CD Skripsi

Analisis Sentimen Terhadap Pelaksanaan Pembatasan Sosial Berskala Besar (Psbb) Pada Masa New Normal Menggunakan Metode Support Vector Machine (Svm)

DWI HANDAYANI/ 1703122462 - Nama Orang;

The spread of the COVID-19 virus has now become a pandemic because it has
spread throughout the world, including Indonesia. The prositive case rate and the
increasing death rate led the Indonesian government to make a regulation limiting
community activities to break the chain of spread of COVID-19 in Indonesia. This
regulation is a Large-Scale Social Restriction (PSBB. This becomes a polemic for
some Indonesian people, especially those who do not have a fixed income. Many
social media users discuss the implementation of PSBB in Indonesia. This study
aims to find out how public’s sentiment towards the implementation of PSBB in
Indonesia during the new normal period through tweets on social media Twitter
using the Support Vector Machine (SVM) method. The data obtained for the
implementation of the PSBB before the new normal was 322 tweet data that had
been labeled while the tweet data for after the new normal was 653 data that had
been labeled. The results obtained using the k-fold cross validation and confusion
matrix method on the model created results in the highest accuracy rate is 81% with
the distribution of data 90% : 10% for data before the new normal and for the data
after the new normal, the highest accuracy value is 71% with the distribution of data
80% : 20%. The use of k-fold cross validation produces the highest accuracy value
of 78% with fold value = 8 for data before new normal, while for data after new
normal, the highest accuracy values is 73% with fold value = 1.
Keywords: Confusion Matrix, K-Fold Cross Validation, PSBB, Sentiment
Analysis, Support Vector Machine, Twitter


Ketersediaan
#
Perpustakaan Universitas Riau 03 05.122 (0010)
03 05.122 (0010)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
03 05.122 (00010)
Penerbit
Pekanbaru : Universitas Riau - FMIPA - Sistem Informasi., 2022
Deskripsi Fisik
xii, 90 hlm.: ill.: 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
03 05.122 (00010)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ELFITRA
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?