Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

CD Skripsi

Prediksi Respons Struktur Bangunan Berdasarkan Spektra Gempa Indonesia Di Pulau Sumatera Menggunakan Jaringan Saraf Tiruan

Hendra Jingga / 1107114362 - Nama Orang;

Artificial neural network (ANN) is a mathematical model developed as the counterfeit of its biological neural network. ANN is capable of modeling nonlinear relationship between specified input and output parameters. In civil engineering field, ANN has been widely used as a prediction tool especially for structural analysis. In this research, ANN is utilized to predict structural response of highrise reinforced concrete building as a function of seismic load parameters, soil condition, and building geometry. Building structural response data are generated by performing modal response spectrum analysis based on 11 seismic locations in Sumatera Island, 3 soil conditions, and 3 building models (10 story, 15 story, and 20 story), aided by finite element computer program to do the tedious computations. These variations resulted in 1485 structural response data sets (for story-drift, story-velocity, and story-acceleration) which are further evaluated based on SNI 1726-2012. As much as 1080 data sets are fed into the ANN for training process, whereas the remaining 405 data sets are used for testing process. After training, the ANN predicts story-drift and story-velocity at the accuracy of 95%. However for story-acceleration, the prediction accuracy is lower (83%). Using the trained ANN weight factors, an ANN based software is created and has the ability to predict story-drift, story-velocity, and story-acceleration of reinforced concrete building (specific for the model in this research) subject to seismic loading in Sumatera Island.
Keywords: artificial neural network (ANN), modal response spectrum analysis, _seismic/earthquake


Ketersediaan
#
Perpustakaan Universitas Riau 07 01. 115 (0040)
07 01. 115 (0040)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 01. 115 (0040)
Penerbit
Pekanbaru : Universitas Riau - Fakultas Teknik - Teknik Sipil., 2015
Deskripsi Fisik
xv, 95 hlm.:ill,; 29 cm
Bahasa
ISBN/ISSN
-
Klasifikasi
07 01. 115 (0040)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?