Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Tingkat Kinerja Struktur Bangunan Berdasarkan Mutu Beton Dengan Metode Jaringan Saraf Tiruan
Penanda Bagikan

CD Tesis

Prediksi Tingkat Kinerja Struktur Bangunan Berdasarkan Mutu Beton Dengan Metode Jaringan Saraf Tiruan

BENY SETIAWAN / 1410246020 - Nama Orang;

Most conditions of multi-story buildings in Bangkinang City are rated not meet the requirements of the planning standards because they are carried out without including earthquake loads during structural planning. This study was conducted aimed to analyze the performance level of building structures based on reviews of displacement, velocity, and acceleration of earthquake loads, as well as identifying the accuracy of Artificial Neural Network (ANN) method in predicting the level of damage to buildings using time history analysis. The object of research is one of the Office Buildings in Bangkinang City. The analysis used is the Non Linear Time History (NLTH) to obtain the performance level of the building structure, which in the planning stage does not calculate the earthquake load, then the analysis process is carried out by modeling the building in a variety of concrete quality between fc'15 MPa to 25 MPa, with the Elcentro earthquake scaling 0.25g, 0.5g, 0.75g, 1g and the peak land acceleration of Bangkinang City 0.024g. Furthermore, the results of the analysis of the building's time history will be analyzed using the Artificial Neural Network (ANN) method, with the result is a level of damage to buildings. After predicting with the Artificial Neural Network (ANN) method, the prediction results are validated using the Mean-Squared Errors (MSE) and Determination Coefficients (R2). The response of the building structure to the Bangkinang peak ground acceleration scale (0.024g) and with all variations in the strenght of concrete, when the THNL analysis was carried out the structure was not damaged and did not reach the condition where the damage began to occur, which means the structural conditions are very safe. Whereas for a 0.25g scale for all concrete quality variations, the structure starts to experience minor damage but the structure is still very suitable for use. The results of the analysis with 0.5g, 0.75g and 1g earthquake scale for all concrete quality were immediately destroyed after the damage began to occur without experiencing Life Safety or Collapse Prevention symptoms. The Artificial Neural Network (ANN) in predicting building structure performance with accuracy (R2) ranges from 94,952% to 98,119%, and the Mean-Squared Errors (MSE) value is 0,00025 for training data sets and 0,00082 for testing data sets . According to to the result the ANN method is very capable of predicting the response of building structures that are very well reviewed.
Keywords: Performance structure, time history analysis, artificial neural network


Ketersediaan
#
Perpustakaan Universitas Riau 10 12. 118 (0007)
10 12. 118 (0007)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
10 12. 118 (0007)
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Teknik Sipil., 2018
Deskripsi Fisik
xiv, 68 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
10 12. 118 (0007)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
PASCASARJANA (MAGISTER) TEKNIK SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
FATAH
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • JUDUL
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?