CD Skripsi
Partisi Bilangan p(5n + 4); p(7n + 5) DAN p(11n + 6) Secara Berturut-Turut Kongruen Modulo 5, 7 DAN 11
A partition of a positive integer is the representation of the positive integer its
self or sums of the other positive integers, while the partition function is the
number of partitions. This article disscusses a simple proof of partition numbers
p(5n + 4), p(7n + 5) and p(11n + 6) consecutively congruent modulo 5, 7, and
11. The proof for modulo 5 and 7 are carried out via Jacobi identities, while
for modulo 11 via Euler and Jacobi identities.
Keywords: Partition number, modulo, generating function, Euler and Jacobi
identities
Tidak tersedia versi lain