Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Analisis Sifat Fisik Yang Paling Berpengaruh Terhadap Koefisien Permeabilitas Tanah Kohesif Menggunakan Artificial Neural Network
Penanda Bagikan

CD Skripsi

Analisis Sifat Fisik Yang Paling Berpengaruh Terhadap Koefisien Permeabilitas Tanah Kohesif Menggunakan Artificial Neural Network

RIOLA SAPUTRA / 1807111341 - Nama Orang;

ABSTRACT
The permeability coefficient is a significant soil parameter in seepage calculations. Permeability is also related to the physical properties of the soil. Of the several soil physical properties, there is one soil physical property that has the most influence on the permeability coefficient. This can be determined by using artificial intelligence which is capable of imitating the human nervous system, one of which is using an Artificial Neural Network which has the advantage of modeling complex relationships. This research will be carried out to determine the physical properties that most influence the permeability coefficient using artificial intelligence, namely the Artificial Neural Network. The research method will be carried out in 3 stages, namely Training, testing, and simulation. The amount of data used is 80 data with 3 variations, namely the 50:50 variation, the 60:40 variation, and the 70:30 variation. Determination of the most influential physical properties can be seen from the R value which is close to 1. The inputs used are Liquid Limit, Plastic Limit, Plasticity Index, %Sand, %Fines, %Silt, and %Clay using a single input - single output. In this study it can be concluded that of the 7 input parameters, the one that has the most influence on the permeability coefficient is %Fines with an average R value of 0.99263, MSE value of 4.1393E-12, R2 value of 0,9475, and MAPE value of 0,3038% found in variation A.
Keywords: Permeability, Soil Physical Properties, Artificial Intelligence, Artificial Neural Network, Backpropagation.


Ketersediaan
#
Perpustakaan Universitas Riau 1807111341
1807111341
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
1807111341
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Sipil., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
1807111341
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK SIPIL
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?