Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Tanaman Herbal Pembebas Nyeri Menggunakan Metode Convolution Neural Network Berbasis Arsitektur Mobilenetv2
Penanda Bagikan

CD Skripsi

Identifikasi Tanaman Herbal Pembebas Nyeri Menggunakan Metode Convolution Neural Network Berbasis Arsitektur Mobilenetv2

Rahayu Kurnia Sari / 2003125720 - Nama Orang;

Indonesia has abundant biodiversity, including more than 2,000 species of herbal plants that have the potential to be used as natural medicines. However, people still tend to prefer chemical drugs due to a lack of understanding of the benefits of herbal plants, including their ability to relieve pain. Additionally, many herbs are found in hard-to-reach areas, adding to the challenges in the identification process. This study aims to develop a model using the Convolutional Neural Network (CNN) method with MobileNetV2 architecture to identify pain-relieving herbal plants based on leaf images. The research process began with the collection of leaf image data from five types of pain-relieving herbal plants, namely star fruit, guava, aloe vera, pandanus, and betel. The data is processed through pre-processing stages such as resizing, normalizing and augmentation to improve the quality and variety of data. The CNN MobileNetV2 model is trained to use this data, and evaluated using metrics such as accuracy, precision, recall, and f1-score. The results showed that the modified model managed to achieve an accuracy of up to 99%, higher than the base model which had an accuracy of 98%. These findings reinforce that the MobileNetV2 architecture is effective in automatically identifying pain-relieving herbal plants, potentially improving public understanding and supporting natural herbal plant-based remedies.

Keywords: MobileNetV2, CNN, Medicinal Plants, Data Augmentation, Image Classification.


Ketersediaan
#
Perpustakaan Universitas Riau 2003125720
2003125720
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2003125720
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2024
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2003125720
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • ABSTRAK
  • DAFTAR ISI
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?