Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Identifikasi Dan Klasifikasi Gangguan Pada Sistem Tenaga Dengan Wavelet Transform Dan Radial Basis Function Neural Network (Rbfnn)
Penanda Bagikan

CD Skripsi

Identifikasi Dan Klasifikasi Gangguan Pada Sistem Tenaga Dengan Wavelet Transform Dan Radial Basis Function Neural Network (Rbfnn)

KALIMAH SAKTI RINJANI / 2107112357 - Nama Orang;

ABSTRACT
Faults in electrical transmission lines, especially short-circuit faults, can cause
power system instability and damage electrical equipment, making accurate
identification and classification methods essential. This study aims to develop a
fault detection method using Wavelet Transform (WT) for feature extraction and
Radial Basis Function Neural Network (RBFNN) for classification. The modeled
power system is the IEEE 30 Bus Test System, and fault simulations were conducted
using PSCAD. The generated fault signals were extracted using Discrete Wavelet
Transform (DWT) with variations of Mother Wavelets (Daubechies-4, Haar,
Symlet-4, and Coiflet-4). The extracted data were then used as input for training
and testing the RBFNN model, with evaluation based on Mean Squared Error
(MSE). The results show that Daubechies-4 (dB4) at decomposition level 3 provides
the best accuracy, with an MSE value below 10⁻⁵, indicating a very low error rate
in fault classification. Therefore, this method is recommended for detecting faults
in power systems. For future research, it is suggested to integrate this approach
with deep learning or machine learning techniques to improve classification
accuracy and efficiency.
Keywords: Transmission Lines, Wavelet Transform, Radial Basis Function Neural
Network, PSCAD.


Ketersediaan
#
Perpustakaan Universitas Riau 2107112357
2107112357
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2107112357
Penerbit
Pekanbaru : Universitas Riau – F.TEKNIK – Elektro., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2107112357
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
daus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?