Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Analisis sentimen pengguna terhadap transisi aplikasi BNI mobile banking ke wondr by BNI menggunakan indobert
Penanda Bagikan

CD Skripsi

Analisis sentimen pengguna terhadap transisi aplikasi BNI mobile banking ke wondr by BNI menggunakan indobert

Kartika Novalia Dewi Sawitri /2103112032 - Nama Orang;

Digital transformation has driven Bank Negara Indonesia (BNI) to introduce the wondr by BNI application as a replacement for BNI Mobile Banking. This study aimed to analyze user sentiment regarding this transition through user reviews collected from the Google Play Store. A total of 35,644 review data were classified into three sentiment categories: positive, neutral, and negative. To address class imbalance, an oversampling process was conducted using the random oversampling technique, increasing the total number of data to 40,776. The analysis was conducted using the IndoBERTbase-p1 model with training hyperparameters consisting of 5 epochs, a learning rate of 1 × 10⁻⁵, and a batch size of 32. The model was trained using three different data splitting ratios for training, validation, and testing: 60:20:20, which resulted in a final accuracy of 85%; 70:15:15, with an accuracy of 88%; and 80:10:10, which achieved the highest accuracy of 90%. The 80:10:10 ratio was selected for evaluation due to its superior accuracy. Evaluation results show the best performance in the negative class with an F1-score of 93%, followed by the neutral class at 88%, and the positive class at 87%. This study demonstrated that IndoBERT is effective for sentiment analysis of application reviews.
Keywords: Google Play Store, IndoBERT, Oversampling, Sentiment Analysis, wondr by BNI


Ketersediaan
#
Perpustakaan Universitas Riau 2103112032
2103112032
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103112032
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103112032
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?