Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Eksistensi Segitiga Sama Sisi dan Kosiklik pada Trisektor Sudut Segitiga Siku-siku
Penanda Bagikan

CD Tesis

Eksistensi Segitiga Sama Sisi dan Kosiklik pada Trisektor Sudut Segitiga Siku-siku

Habibi Lukman Setiawan / 2010241834 - Nama Orang;

In any polygon, especially a triangle, several special lines can be given. One of them is the angle trisector. An angle trisector is two lines that divide an angle into three equal parts. One theorem that uses angle trisectors is Morley’s Theorem. Basically, Morley’s Theorem applies angle trisectors to the inner angles of any triangle. From these angle trisector lines, several intersection points are obtained, three of which can form an equilateral triangle. This equilateral triangle became known as the Morley
Triangle.
Various developments have been made to Morley’s Theorem. These developments are focused on the types of corner trisectors, namely inner angle trisectors, supplementary angle trisectors, and outer angle trisectors. By using a combination of the three types of angle trisectors which are then applied to all corners of any triangle, 27 equilateral triangles are produced.
By disregarding the angle trisector at one corner of any triangle, a problem will arise, that is an equilateral triangle cannot be formed except by providing three types of angle trisectors at the other two angles simultaneously.
To be able to produce an equilateral triangle by providing one type of angle trisector or a combination of two or even three types of angle trisectors at both corners of the triangle, the type of triangle needs to be modified to become a right triangle. Furthermore, by providing one and a combination of the three types of angle trisectors at non-right angles, 37 equilateral triangles are produced, consisting of 26 equilateral triangles without the cocyclic concept and 11 equilateral triangles using the cocyclic concept. There are also some of the resulting equilateral triangles that are equilateral triangles that cannot be found by applying Morley’s Theorem using any triangle. The sine rule and cocyclic theorem are used to prove that the resulting triangle is an equilateral triangle.
Keywords: Inner angle trisector, outer angle trisector, supplementary angle trisector, Morley’s Theorem, Morley’s Triangle


Ketersediaan
#
Perpustakaan Universitas Riau 2010241834
2010241834
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2010241834
Penerbit
Pekanbaru : Universitas Riau – Pascasarjana – Tesis Matematika., 2023
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2010241834
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
MATEMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Jaka
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL PENELITIAN DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?