Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Prediksi Penyakit Gagal Ginjal Kronis (Ckd) Menggunakan Metode Duo Output Neural Network Ensemble (Donne) Berbasis Website
Penanda Bagikan

CD Skripsi

Prediksi Penyakit Gagal Ginjal Kronis (Ckd) Menggunakan Metode Duo Output Neural Network Ensemble (Donne) Berbasis Website

M. Rizki / 2103110497 - Nama Orang;

Chronic Kidney Disease (CKD) is one of the degenerative diseases that has seen a significant increase and has a major impact on the quality of life of those affected. Early detection of CKD is crucial for reducing the risk of complications and improving patient prognosis. This study aims to develop a CKD prediction system using the Duo Output Neural Network Ensemble (DONNE) method. The research data were collected from outpatient medical records at Arifin Achmad General Hospital in Riau Province, with a total of 397 samples. The DONNE method combines multiple artificial neural network models to produce more accurate and robust predictions. Three experiments were conducted to evaluate the model's performance, with the first experiment using a configuration of 10 Models, 50 Epoch s, and a Batch Size of 32 yielding the best results. This experiment achieved an accuracy of 97.79%, Recall of 89.83%, Precision of 98.15%, and an F1-score of 93.81%. These results indicate that the DONNE method is capable of providing better predictions than traditional methods. The developed system is expected to become an effective and easily accessible diagnostic tool to assist medical personnel in early decision-making.
Keywords: Artificial Neural Network, Chronic Kidney Failure, DONNE, Early Detection, Ensemble Learning.


Ketersediaan
#
Perpustakaan Universitas Riau 2103110497
2103110497
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110497
Penerbit
Pekanbaru : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110497
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?