Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Alfabet Sistem Isyarat Bahasa Indonesia Menggunakan Arsitektur Mobilenet Dan Metode Ensemble
Penanda Bagikan

CD Skripsi

Implementasi Algoritma Convolutional Neural Network Untuk Identifikasi Alfabet Sistem Isyarat Bahasa Indonesia Menggunakan Arsitektur Mobilenet Dan Metode Ensemble

Kesya Lantio / 2103110234 - Nama Orang;

This research focuses to identify alphabets in the Sistem Isyarat Bahasa Indonesia (SIBI) using the Convolutional Neural Network (CNN) algorithm with a transfer learning approach. Three CNN architectures were used: MobileNetV1, MobileNetV2, and MobileNetV3-Small. The dataset consists of 1,560 static hand gesture images representing 26 alphabet letters, collected from public sources (Kaggle) and manual documentation. All images were processed through augmentation and resized to 224×224 pixels before training. The models were trained using pre-trained weights from ImageNet and further optimized through fine-tuning. The results showed that MobileNetV1 and MobileNetV2 performed consistently well, achieving validation accuracies of 91% and 88% respectively after fine-tuning. In contrast, MobileNetV3-Small only reached 40% accuracy and exhibited signs of severe overfitting, and was therefore excluded from the ensemble stage. The two best-performing models, MobileNetV1 and MobileNetV2, were combined using the ensemble majority voting method to improve prediction accuracy. The final results showed that the combined model achieved an accuracy of 92%, outperforming each individual model. These findings demonstrate that the ensemble method is effective in enhancing the performance of CNN-based SIBI alphabet identification.

Keywords: CNN, Ensemble Voting, Image Classification, MobileNet, SIBI.


Ketersediaan
#
Perpustakaan Universitas Riau 2103110234
2103110234
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103110234
Penerbit
Pekanbaru - : Universitas Riau FMIPA Sistem Informasi., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103110234
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM INFORMASI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?