Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Perbandingan Metode Regresi Logistik Biner Dan Algoritma C5.0 Untuk Mengklasifikasi Wilayah Desa Perdesaan Dan Desa Perkotaan Di Kota Sungai Penuh
Penanda Bagikan

CD Skripsi

Perbandingan Metode Regresi Logistik Biner Dan Algoritma C5.0 Untuk Mengklasifikasi Wilayah Desa Perdesaan Dan Desa Perkotaan Di Kota Sungai Penuh

Femmy Aisya Rahmasari / 2103113390 - Nama Orang;

The classification of rural and urban areas has become an important aspect in development planning and policy-making. The aim of this study is to identify the best classification method and determine which variables significantly influence the classification of rural and urban villages in Sungai Penuh City. Binary logistic regression is used to identify the factors affecting area classification, while the C5.0 algorithm is applied to build a decision tree-based classification model. The results of the binary logistic regression analysis show that the variables significantly influencing area classification are population density and the availability of kindergartens (TK). The resulting model has an accuracy of 61.9% and an F1-score of 63.6%, indicating a level of classification accuracy that still has room for improvement. Meanwhile, the classification results using the C5.0 algorithm indicate that the variables that influence the differentiation between rural and urban villages are households with agricultural businesses (RTUP), population density, and the availability of kindergartens (TK). The model produced using the C5.0 algorithm has a higher accuracy of 76.2%, with an F1-score of 80%, indicating that the C5.0 method is more effective than binary logistic regression in classifying rural and urban village areas in Sungai Penuh City.

Keywords: Classification, rural and urban villages, Sungai Penuh City, binary logistic regression, C5.0 Algorithm.


Ketersediaan
#
Perpustakaan Universitas Riau 2103113390
2103113390
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
2103113390
Penerbit
Pekanbaru : Universitas Riau FMIPA Statistika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
2103113390
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
STATISTIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB 2 REGRESI LOGISTIK BINER DAN ALGORITMA C5.0
  • BAB 3 METODE PENELITIAN
  • BAB 4 KLASIFIKASI DESA PERDESAAN DAN DESA PERKOTAAN MENGUNAKAN REGRESI LOGISTIK BINER DAN ALGORITMA C5.0
  • BAB 5 KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?