Digilib Perpustakaan Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Klasifikasi  Tandan Buah  Segar Kelapa  Sawit Varietas Dura Dan Tenera Berdasarkan Densitas Buah Menggunakan Computer Vision Dan Image
Penanda Bagikan

CD Skripsi

Klasifikasi Tandan Buah Segar Kelapa Sawit Varietas Dura Dan Tenera Berdasarkan Densitas Buah Menggunakan Computer Vision Dan Image

Farid Amanullah / 210313478 - Nama Orang;

Conventional identification of oil palm varieties, particularly Dura and Tenera, is still carried out destructively and subjectively, making it less suitable for large-scale applications. This study proposes a non-destructive classification method based on computer vision using ImageJ software. A total of 40 fresh fruit bunches (FFB), consisting of 20 Dura and 20 Tenera, were imaged from both the front and back sides under standardized conditions using a CMOS camera. Digital image analysis with a resolution of 1024 × 768 pixels was performed to extract morphological parameters, including fruitlet count, bunch area, mean RGB intensity, fruitlet density (fruitlets/cm²), as well as bunch mass and its relationship with density. The results showed that the Tenera variety consistently exhibited higher density, fruitlet count, RGB intensity, and bunch mass compared to Dura. Meanwhile, the Dura variety demonstrated a stronger correlation between bunch mass and fruitlet density. These findings confirm that ImageJ-based computer vision is a rapid, objective, cost-effective, and non-destructive method for oil palm variety classification, with strong potential to support quality assessment and the optimization of CPO production.
Keywords: Computer vision, ImageJ, oil palm, fresh fruit bunch, variety, fruitlet density, classification.


Ketersediaan
#
Perpustakaan Universitas Riau 210313478
210313478
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
210313478
Penerbit
Pekanbaru : Universitas Riau FMIPA Fisika., 2025
Deskripsi Fisik
-
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
210313478
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
FISIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Mutia
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODE PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V PENUTUP
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?