Digilib Perpustakaan Universitas Riau

Tugas Akhir, Skripsi, Tesis dan Disertasi Mahasiswa Universitas Riau

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of Pengenalan Jenis Bunga Menggunakan Principal Component Analysis Dan Jaringan Syaraf Tiruan
Penanda Bagikan

CD Skripsi

Pengenalan Jenis Bunga Menggunakan Principal Component Analysis Dan Jaringan Syaraf Tiruan

Suryani / 1407119301 - Nama Orang;

Flower has variety of species and shapes. In the flower species recognition, classification is a difficult task because of close shape similarity among different flower classes. Any flowers that have similar shape are usually grouped into the same flower class. However, different species of flowers can have shape that look similar to one another. Lighting conditions and viewpoints when the flower image was taken, also can be varied. All of these circumstances obviously lead to a confusion among the flower classes when flower images of the different flower species that have look similar shape were classified. This research applies the Principal Component Analysis and Backpropagation Neural Network Method in flower species recognition system. Objective of this research is to find out the best flower species recognition that can be used to identify flower image. This research involves 480 flower image data and 8 species of flowers, which consists of 280 training images and 200 testing images. From the results of this research, the Principal Component Analysis and Artificial Neural Network Method shows the good performance of flower species recognition system, with an accuracy average is 97%.
Keywords: flower species recognition, Principal Component Analysis, Artificial Neural Network, Backpropagation


Ketersediaan
#
Perpustakaan Universitas Riau 07 05. 118 (0002)
07 05. 118 (0002)
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
07 05. 118 (0002)
Penerbit
Pekanbaru : Universitas Riau – Fakultas Teknik – Teknik Informatika., 2018
Deskripsi Fisik
xvi,, 84 hlm.; ill.; 29 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
07 05. 118 (0002)
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
INFORMATIKA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
DAUS
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • COVER
  • DAFTAR ISI
  • ABSTRAK
  • BAB I PENDAHULUAN
  • BAB II TINJAUAN PUSTAKA
  • BAB III METODOLOGI PENELITIAN
  • BAB IV HASIL DAN PEMBAHASAN
  • BAB V KESIMPULAN DAN SARAN
  • DAFTAR PUSTAKA
  • LAMPIRAN
Komentar

Anda harus masuk sebelum memberikan komentar

Digilib Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?